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ABSTRACT: This' article describes the use of numerical 
method in magnetohydrodynamics, in particular, for 
the stu 1 y of the T-layer . 

. I  . . _  

1. Introduction 
i 

In theoretical investigations of several problems of applied magnetohydro- 
dynamics (various types of MHD generators, some problems in astrophysics, 
etc .) , considerable interest is attached to the study of processes of interaction of 
a compressed conducting gas with a magnetic field at arbitrary Reynolds numbers 
Rem and parameters of magnetic interaction R = H /8atp, where H is the mag- 
nctic ficld intensity and p is the prcssuro. In this case, togcthcr with physical 
experiments, an important role is played by the investigation of mathematical 
models that take into account, in general, the nonlinear relationships of non- 
stationary processes of magnetohydrodynamics. Here, numerical methods, even 
in a one-dimensional approximation, enable us not only to study the quantitative 
aspects of the processes but also to set up a number of new qualitative relation- 
ships. Thus, the use of numerical methods for the solution of the equations of 
magnetohydrodynamics, taking into account the complicated nonlinear dissipative 
processes, has made it possible to solve several important physical problems 
[l-61. Paper in [6], describes a new physical phenomenon known as the T-layer 
effect , that is, a high-temper ature , electric ally -conduc ting self -supporting 
layer of a gas that is generated in a certain fraction of the mass by Joule heating. 

f i 025  * - 
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The present article is devoted to a description of numerical methods of 
solving the. equations of magnetohydrodynamics which, in particular, are applied 
in the study of the T-layer phenomenon. It is assumed that therma1,and electri- 
cal conductivities can be arbitrary functions of temperature and density. The 
method and the corresponding computer programs enable us  to solve a large 
class of problems with various combinations of boundary conditions and equations 
of state. Account is also taken of the fact that the medium being studies may 
consist of several regions with various sharply differing physical properties. 
The real physical viscosity is neglected. 

The system of magnetohydrodynamic equations is solved by the method of 
finite differences. The procedure for solving the equations of hydrodynamics 
involving thermal conduction (without magnetic field), developed by A. N . 
Tikhonov and A. A I  -Swarskiy.in 1952, i s  used-as a basis. . . . . . . . 

I 
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I This article considers implicit conservative difference schemes that are 
unconditionally stable. The conservation of the difference scheme is very signi- 
ficant when we take into account discontinuities in the solution (contact and shock 
waves), since it ensures Convergence of the difference schemes even when there 
are discontinuities. 

The procedure can betapplied to the solution of multi-region problems in 

/I026 

which the physical properties of the media vary sharply. In this case, the dif- 
ference scheme must be quite reliable as far as the stability to local violations 
in the monotonicityds concerned. 

The method of successive sweeps for solving the problems of hydrodynamics 
involving heat conduction (without consideration of a magnetic field), in  the deve- 
lopment of which N. N. Kalitlcin participated, has been used since 1958. An 
analogous method is proposed independently in [7]. 

The procedure expounded in the present article was developed in 1962 and 
was first announced at the third Riga Congress on Magnetohydrodynamics in 
1964, 

The authors express their gratitude to ,A. N. Tikhonov for his attention to 
the article, and to V. Ya. Gol'din and N. N. Kalitkin for useful comments, 

The authors are grateful to D. A. Gol'dina, who developed the computer 
program for calculating the equations of magnetohydrodynamics by the procedures 
described in the present ayticle, and to  V. N. Ravinskaya and A. A. Ivanov, who 
took part in the setting up ,of the individual parts of the program and in the carry- 
ing out of the numerical calculations. 

2. A system of differential and finite-difference 
equations of magnetohydrodynamics 

1. Let t be time, H - magnetic intensity, v - velocity, p. - the density of 
the medium in question, p - pressure, and E - internal energf. The system of 
magnetohydrodynamic equations, assuming nonlinear electrical and thermal con- 
ductivities in the absolute Gaussian system of units is [8] 

where vm I_ = @ / h a  denoted the magnetic viscosity and c denotes the velocity of 
light. 

i 
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The electrical conduct&y 6 and thermal conductivity x are nonlinear func- 
tions of the temperature T and the density p, and they satisfy the conditions 
aa / ilT 2 0, Ox / dT 3 0. 
the density and temperature. 

The internal energy and the pressure are functions of /lo27 

2. We denote by r, (p, 'and z the cylindrical or Cartesian coordinates. Sup- 
pose that one-dimensional motion of the medium is directed along the Eulerian 
axis r, Let us assume that, in the plane case, there can exist a nonzero com- 
ponent Hr of the vector H directed along the motion, and components HIP and Hz 
perpendicular to that motion. From the equation div H = 0, we have Hr = H 
= const in the plane case and Hr in the axisymmetric case. We denote by 

vr* 9 9  

= ' 
rO 

0 
v and vz the corresponding components of the velocity vector v. 

In the direction of the motion r, we introduce the Lagrangian coordinate x of 
the mass, related to r by the formula dx,= pP-ldr, where Y = 1 corresponds to 
the plane case and u = 2 to the axisymmetric case. 

3 .  A solution of the system (2. I) is sought in the bounded region 0 < z < Z,- 
' where x = 0 is the left-hand boundary of the plane medium or  the center of axial 

symmetry and x = 1 is the outer boundary of the medium. . 
* I I  I 

For gasdynamic quantities, either the velocity or  the pressure can be given 

For the equation of energy, the temperature T o r  the heat flux W can be 

For the equations of thd magnetic field, either the components Hcp and HZ 

on each of the boundaries as an arbitrary function of time. 

given on the boundary. I 

of the field vector or  the functions 
I 

I 

. _.. 

can be given on each of the boundaries x = 0 and x = 1 in the form of arbitrary 
functions of time. 

The components of the magnetic field vector on the boundaries x = 0 and 
x = 1 can also be determined from the supplementary equations for the electrical 
circuit. b 

When there are  contact discontinuities (several regions with varying physi- 
cal properties) in the medium, the system (2.1) and the boundary conditions are 
supplemented by conjugacy conditions which are the continuity of the.heat flux to 
the left (back) and right (forward) of the discontinuity, and the continuity of the 
temperature I 



Furthermore, for. 6 '# 0, we require continuity of the functions CD andV to the 
left and right of the contact discontinuity, as well as  the isomagnetism conditions 

0 1  =: @r, ,Yl Yr, ' =,€IqL" ' HZl = Hzr.  (2.3) 

At the initial instant t 0, the components of the vectors v and H are given 
and so are the density p(0, x) [or the radii r(0, x)] and the temperature T(0, x) . 

4. The system (2.1) cah be solved by the method of finite differences. In ' 

the region G = {(z, i ) } ,  we construct a nonuniform lattice urn,% = {(zi,. i j)}. We 
- x ~'-1= I! - tj-' the pitch of the lattice corn,% with respect i' denote by mi = 

to space and time. We replace the functions being analyzed with the correspond- 
ing lattice functions. The values of the velocity functions, the coordinate r, and 
the thermal and magnetic fluxes 

/lo28 

refer to the "integral" (nodal) point of the grid (xitj). The various values of the 
functions representing the density, pressure, temperature, internal energy, and 
the magnetic field intensity 

- 
refer to the ''intermediateff points of the lattice ( n + l ~ ,  t ' )  , where xi+.% = 01.5 (xi + z;+~) 
is the midpoint of the mass interval mi, To simplify the notation, we shall use 
only integral subscripts for the lattice functions. We shall write 

- 
7ni = si+$" -xi-v, = ( x N  = 1 

The shift from a system of differential equations to a system of finite-difference 
equations at the interior points of the lattice 0 <x i€% = 1 is done by replacing 
the derivatives with respect to x with the two-sided (central) differences and with 
one-sided [left (backward) - qnd right (forward) -sided] differences at the boundary 
points x = 0 and x = 1. 

The equations of motion (for the plane case Y = l), and also the equation of 
continuity and the equation of energy are  analyzed in their divergent form, that 
is,' in the form of balance equations. Therefore, when we write the correspond- 
ing difference equations, it is natural to use the integro-interpolational (energetic) 
method, with the aid of which we can construct conservative difference schemes 
[9-121. The conservatism which ensures convergence of the difference schemes 
even when there are discontinuitieq, i s  very essential in the obtaining discontin- 
uous rsolutions (osfitmt and shook wa-vea) 

form . 
The system of difference equations approximating the system (2.1) has the 
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where /I029 

In an analogous manner, we write the difference equations for the components 
of the velocity v and the magnetic field HQ . 

i 'p: 
1 

The constants Y Y2, I ,Ys, and Y. in the system (2.4) -(2.8) have various 4 
values depending on the choice of the difference scheme. A f Y1 = 0, Y2 = 1 and 

underthe-assumption that the differ'hce value-of the velocity vii is related to the- 
intermediate layer with respect to time -(Zi, -- i$-''a), we have an explicit %ross'' 
scheme. For y = lfz, we have a symmetric implicit scheme and, for yi = 1 we - 

- -- j -_ - _ _ _  , -_____ - ___-- 
- 

__ I -_ I____ - _  _-I- ~ - -_^ - - - - 
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have an implicit scheme with lead. 

6 .  The difference forplula for the "magnetic flux" $/takes the form 

(2 9) 

where 

1 :  In this fraction, k(T)= k~~(pi,~,.T~,~).is t k  magnetic viscosity of the region to the 
left of the contact 'discontinuity and 1cZI+) = Icz(pi,-  T i )  is that to the right of that 
discontinuity. The expressions for-the-function Oi-&d the integral flow Ni have 
an analogous form. In the derivation of a formula (2.9) we keep in mind a 
possible discontinuity in the conductivities on the contact discontinuity and also 
the conjugacy conditions (2.3) . 

The difference formula for the heat flux W is analyzed in the form 

, ' 'Wi = /Ci(&-i-Zi),  

where Z = Ta / a is a power function of the temperature [9, 13 J and ki has a form 
analogous to (2.9). The linearization of the heat flux with respect to function z' 
enab'les us  to correctly take into account the temperature wave front, using crude 
space lattices in the case when the thermal conductivity x is a large-power func- 
tion of the temperature ( x  - We also allow for the possibility of lineariza- 
tion of the heat flux with respect to temperature T . 

3 ,  The procedure for direct calculation of shock waves 

1. In many problems of magnetohydrodynamics that are interesting in prac- 
tice there may be discontinuous solutions that is shock waves. 

For 0 < cr < 00, shock waves (under the assumption that the structure of their 
front is not taken into account) are isothermal and isomagnetic; that is, the tem- 
perature and the magnetic lfield intensity in the shock wave front are continuous 
while the flows are discontinuous [14]. 
' 

conductivity ( 6 = a), we bave several types of shock w$ves; differing from each 
other in their physical properties [8]. 

The procedure considered here assumes that it is possible to make a direct 
calculation of shock waves without an explicit delineation of the front of the dis- 
continuity. 

When th'e medium is thermally nonconducting (x= 0) and has infinite electrical I 

BO30 

For this, in analogy with ordinary gasdynamics [15 161, we introduce the 
1 mechanism of artificial viscosity (the so-called ~~pseudoviscosity") , . which serves 

for "smearing out" of the khock waves. 
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The € o m s  of the viscosity may be varied. 

- .  

- - - _  

At p = 1, (3 .l) corresponds to the so-called quadratic viscosity; for p = 0, it 
corresponds to linear viscosity analogous 
viscosity. It follows from (3.1) that, for = 1, in the region where a(r?%) dx 

' 2 0, the viscosity o = 0; that is, outside the zone of the shock waves, the viscosity 
has no effect. The choice of the coefficient xo depends in a very real way on the 
nature of the motion of the medium, and is made by numerical experiments. (For 
greater detail ob the choice of viscosities, see [17].) 

, 
the second physical (i e., volume) 

I 

Besides viscosity of the form (3.1), one can use a combination viscosity that 
has the form [18] 

I 

When the velocity gradients are  large, this viscosity coincides with the quadratic 
viscosity; when they are small, it coincides with linear viscosity. 

/I031 
In the case a = 00 (a frozen magnetic field) and H # 0, the system of equa- 

rO 
tions of motion and of the magnetic field is hyperbolic. In this case, for a direct 
calculation of the magnetohydrodynamic discontinuities, we again need to intro- 
duce artificial viscosities into the equations for the components of velocity vq ' 

and vz and into the equations of the magnetic field. It should be noted, however, 
that, in the introduction of1 the pseudoviscosities into the equations of magneto- 
hydrodynamics, we need to make. sure that the conditions for development of 
magnetohydrodynamic! diiscontinuities are satisfied. 

I 

In analogy with ordinary gasdynamics, the viscous 
form 
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Fig. 1. 
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In the corresponding difference formulas, we add to the right-hand member of 
(2.5) a term of the form (1/Gt) ( w z i -  Qzt-,),  and, when Y ' h  0, we add to the 
right-hand member of (2.8),a term of the form (I/.ti) (hZi-hz i~+, ) .  

Reasonable values of the ,numerical viscosities v i ,  'v;, p b ,  and jti for (3.3) 

and (3.4) were chosen by numerical trials; they depend on the specific problems 

I 

under consideration. 

2, Let us give an example of computer calculation of fast magnetohydro- 

i Ilq r= 0, ulPi 
dynamic shock waves for the case 0 = 00 (frozen magnetic field), II;, += 0, iC 

accordance with an implicit difference scheme with y1 = Y.2 = 1, and y3  = y4 = 1/2. 

0, 
0. We consider the plane case The calculations were made in 

For simplicity, we expressed pressure in the form p = const p. The results 
of comparison of numerical solutions with the analytic one are shown in Figs 1 
and 2. Hero, the solid curve represonts the analytic solution, tho dot-and-dash 
curve represents tho numerical solution with viscosities of the form (3.3),  (3.4), 
and (3.1) for 11 = 1, and the dashed curve represents the numerical solution with- 
out consideration of the viscous terms in the equation of the field. 

The spatial lattice used; was uniform, and we specified 50 mass intervals mi. 

The comparison between Figs. 1 and 2 shows that the accuracy of the calcu- 
/, 

lations is satisfactory. 

Several calculations have indicated that the combination viscosity (3.2) has 
a definite advantage over other forms of viscosities. 

4. The iteration method of successive sweeps 

1. The solution of the system of difference equations (2.4)-(2.8) from impli- 
cit difference schemes with,consideration of the dissipation of energy due to elec- 
trical and thermal conductivity is carried out by the iteration method of successive 
sweeps. 

The basic concept of thg method involves reducing the individual equations 
of the system to second-order difference equations and in repeatedly applying 
the familiar double-sweep method [19] to solve them. 

conductivity (without magnetic field) were used by I. M. Gel'fand, 0. V. Lokutsi- 
yevskiy, and V. F. D'yachenko in 1957. The corresponding system of difference 
equations was solved by the method of matrix sweeps. 

Implicit difference schemes for the equations of gas dynamics with thermal 
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In the method of successive sweept one uses only a one-dimensional sweep 

The order of the calculation of the individual equations in the system (2.4) - 

At every jth layer, we first solve the energy equation (2.7) under the assump- 
tion that the magnetohydrodynamic quantities are known (sweep with respect to T) . 
Then, we  solve the system of equations of gasdynamics (2:4)-(2.6) when the tem- 
perature is known and the magnetic values are fixed (sweep with respect to v) 
Finally, we solve the system of equations for diffusion of the magnetic field [see 
(2.8)] when we 
with respect to % . 

for three-point difference equations, 

(2.8) need not be the same A The following calculating sequence has been chosen. 

I 

*i 

/lo33 
- i  

ow the temperature and the hydrodynamic quantities (sweep 

Each indivi B ual back-and-forth sweep procedure is continued until the con- 
vergence condition is satisfied. A single calculation of the first two double- 
sweeps (with respect to T and with respect to v) constitutes a small-circle cycle, 
All thrce sweeps (with respcct; to T, with respect to v, and with rcspcct to 1-1) 
constitute a large-circle. cycle. Every small circle within a large circle and 
then every large circle are counted up to the given number of cycles. 

Experiment indicates that two ,small-circles and two large-circle cycles are 
sufficient for satisfactory accuracy of the calculations. It follows from many 
numerical calculations that the maximum number of iterations, when every indi- 
vidual sweep is taken into account, does not exceed three or four. 

2. Let us stop to look (at the method of solving the energy equation in greater 
detail. Let us suppose that, at the jth layer in time, the hydrodynamic quantities 
and also the magnetic field intensity and the magnetic flux N are known, 

Let us linearize the function e j  = s(~j, Tj) by Newton's method; that is, let 
us represent it in the form 

where 1: =. Ta/a, 6 S 8 )  -= P+*) - W,and s is the number of the iteration. If we 
substitute (4.1) into (2.7), we obtain the following second-order difference equa- 
tion with respect to function %sf*): i 

where the coefficients a:), $),, cr '  - and 6") depend on the function Tf"' and also 
on vi, p., and Hi. The solution of (4.2) is found from the familiar recursion for- 

1 

1 
mulas of the sweep method.' 

The equation of diffusiqn of a magnetic field under the assumption that the 
hydrodynamic and thermal quantities are fixed is a second-order linear difference 
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equation in Ilo and I-Iz, and is solved by the double sweep method with respect to 
Hcp and HZ without iterations. 

I 

Calculations have shown that i f  6 is zero or  close to zero, the calculation 
of the equations of diffusion of the magnetic field by the double-sweep method 
with respect to the functiori H does, in many cases, lead to unsatisfactory results. 
Analogous difficulties in calculations were mentioned in [5]. The difficulty lies 
in the fact that, for ' c p  = 0, the derivatives i3(r+*11v)/8x and OHZ/8x are equal to 
zero and the fluxes (z) and IJI become indeterminate. Physically, the functions cp 
and II ,  retain a finite value even in this case. The indeterminate form of the type 
Ob which O C C U ~ B  in the difference equation for diffusion of the magnetic field 
leads to instability and, in some cases, to a significant distortion of the solution. 

In [20], the method of flux-by-flux sweep is proposed. In the case of the 

, 

equation of diffusion of the field, one first determines by the sweep method the 
fluxes <I) and 'I!, and then the field H,  In the flux-by-flux variant of the sweep, the /I034 - 

' functions (1) and '1' are swept with a greater degree of accuracy than in the cage 
of ordinary sweep with .respect to €1, which is very significant. 

At the present time, the method of flux-by-flux sweep is used both to solve 
the equation of diffusion for' a magnetic field and the energy equation for an arbi- 
trary range of values of electrical conductivity0 < (I < -and thermal conductivity 
0 < x < 00. In this connection, the authors, together with N. N. Kalitkin, L. M. 
Degtyarev, A. P . Favorskiy and Yu. P . Popov suggested analysis of the equations 
of the magnetic field in their divergent form, that is, in the form, 

and to separate out the te rn  in the energy equation representing the Joule heating, 
.that is, to consider ths equation in the form, 

1 
where-Q =--(; / c2@)- (F-+-02) 'is Joule heating resulting from the electric current 
and 

is the Lorentz force. I 

Equations (4.3) and (4.4) are equivalent to the equations of diffusion for a 
magnetic field and of energy in the system (2.1). 

We cannot give here a detailed derivation of these suggested changes in pro- 
cedure for computing the equation of diffusion for a magnetic field or the energy 
equation 8 
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5. Analysis of the stability of a system of difference equations 
4 

The problem of stability of the full system of difference equations (2.4) -(2,8), 
including all the dissipative terms, is very'complicated. The problems of sta- 
bility of parabolic equations have been inyestigated rather thoroughly [9-121. 
Experiment shows that the greatest restriction on the step with respect to time 
must be imposed in the limiting case vkn E: 0 and x = 0, that is, when the system 
of equations is hyperbolic. 

An analysis of the Stability that was made by the spectral method [15] for the 
case vm = 0, x = 0, Y = 1, under the assumption that the equations of state of an 
ideal gas [p = p~./(y - 1), where y is the adiabatic exponent] a re  valid, leads to the 
following results (for details, see [21]) : 

1. The implicit scheme with lead (vi = 1) , the symmetric scheme (.yl = 1/2) 
and also the implicit scheme Cy, = y2 = 1, Y . ~  = y4 = 1/2) are unconditionally 
stable. 9 '  . ..-* . 

2. The condition of stability of an explicit %rosstt scheme (yl = 0, y2 = y3 = 

= Y.4 = 1) has the form 

I rlom/c+o, (5 1) 

where c + ~  is the /fast magnetohydrodynamic velocity of sound [8] and q = 1/x. 
I 

Condition (5.1) is a generalization of the familiar Courant condition of ordi- 
nacy gasdynamics for a system of magnetohydrodynamic difference equations. 

can be large, and, consequently, the stability condition (5.1) may considerably 
restrict the step with respect to time z. Therefore, explicit schemes are not 
useful for practical solution of the equations of magnetohydrodynamics, 

Experiment shows that, in a number of problems, the quantity c+ = c ( p ,  p, 117) 
/ 1035 

3 .  Let us  now look at implicit schemes analogous to the scheme considered 
in [7] for ordinary hydrodynamics. To solve the difference equations presented 
in [7], we again use the double-sweep method. In practice, these schemes cor- 
respond to a single cycle of successive sweeps in a scheme with lead (see section' 
4,. subsection 1). 

The analysis carried out for the case H = 0 shows that, independently of 

the order of application of the successive.sweeps, any one of these schemes is 
unconditionally convergent only when 

rO 

or 
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For 
I 

, P/8n > (1 - y/2) p j -OF y > 2 (1 --;RH) (5 93) 

the stability condition has tlie form 

For H 
(5.2) and (5.3). I 

0, the stability conditions given in [7] follow immediately from conditions 

For H # 0 and, especially, in the case RH> 1, that is, for a broad class of 
problems that are of interest in practice, the difference scheme considered in 
this subsection is hardly more economical (in the sense of speed calculation) 
than the scheme with lead, since a definite restriction on the step of the form 
(5.4) is required for stability. Furthermore, it should be noted that in the approxi- 
mation of the differential, system of equations by means of such schemes, the di- 
vergence with respect to time is violated in the equation of motion and in the equa- 
tion of energy; that is, the conservatism of the difference scheme is violatod. 

The numerical experiments that have been carried out show that when the 
medium contains dissipative terms of thermal conductivity and finite conductivity 
the best scheme, both in terhns of accuracy and in terns of economy, is an uncon- 
ditionally convergent implicit difference scheme obtained at weighting factors 
yl = y2 = 1, y3 = yi4 = 1/2. That is, the optimum scheme is an implicit scheme 
with lead for the system of hyperbolic equations of motion and continuity and a 
symmetric implicit scheme for the system of parabolic equations of energy of 
the magnetic field. 

I 

'I 

6.  Comparison of numerical solutions with self-similar ones 
I 

An estimate of the accuracy of the numerical methods described above for 
solving the system of equations of magnetohydrodynamics has been made experi- 
mentally by solving a large number of model problems. As a check on the pro- 
cedure, we chose difficult problems with sharply varying physical parameters and 
significant nonlinearity of the processes. 

As an example, let us look at the self-similar plane problem of the motion 
of a gas in front of a piston in a magnetic field in the case of nonlinear heat con- 
duction and conductivity [22]. It is assumed that the velocity of the piston and 
the temperature are a power i371-i9, and that the 
axial magnetic field on the pi isconstant: H =const 0;"- In front of the 

piston, we have a gas with initial conditions 

/lo36 

tion of time (v - tn--i, T 
Z 
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The coefficients of thermal conductivity x and electrical conductivity CJ are 
power functions of the temper-ature and density: 

~ x = xgi+ncp-ao, a = O;T+F~, nto > D, nri > 0. (6.1) 
I 

, .' 
. At some ratios of the constdnts n, 1, mo, ml, a and C J ~ ,  our problem becomes 

- 0  
self-similar. I 

... ' 

1 I I I I 1 .: I - * 0 1  

uot" j * 

f. 0 a o  
, O O t  

a 40 2.0 3.0 

Fig. 3 .  I Fig. 4. 

Figures 3 and 4 show comparative graphs of the dimensionless temperature 
T / vo2tqn-1) (see Fig. 3) and density p / plrl (see Fig. 4) as  functions of the dimen- 
sionless coordinates r/uoln. (Here, vo and pi are dimensional constants.) The 
solid curves in Figs. 3 and 4 represent the self-similar solution. The circles 
and crosses are the corresponding values of the numerical solution at various 
instants of time t. Calculation by scheme (2.4)-(2.8) starts at the instant t = 0 
(assuming zero or constant, initial conditions), after which one achieves the self- 
similar mode. 3 

Despite some "strangeness" of the boundary and initial conditions, our self- 
similar problem does account for the significant nonlinearity in the electrical 
conductivity (a -'Ta'z) and thermal conductivity(x 

the implicit schdme with Y1 = Y2 = 1, Y3 = Y.4 = 1/2. The circles in Figs. 3 and 

4 correspond to the instant t = tl, at which the wave representing the distulrbance 
(temperature wave) fits into nine mass intervals on the lattice. The upright 
crosses represent the instant t = t2 at which the temperature wave fits into 14 
mass intervals, and the diakonal crosses correspond to the instant t = t3 at which 
i 

T5). 

The calculation was carried out by the method of successive sweeps using /lo37 
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I 

the tempecature wave fits into 24 mass intervals on the lattice. 

Numerical solution shows that the self-similar mode is achieved rather 
rapidly and accurately. 

A large number of magnetohydrodynamic problems of practical importance 
were solved by this procedure. A striking example of the efficiency of the use 
of numerical methods in magnetohydrodynamics is the discovery, .with the aid 
of a computer, of a new physical phenomenon, the so-called T-layer (tempera- 
ture layer) e€fect [6]. The'basis of the T-layer phenomenon is that a compres- 
sible medium can, under certain conditions, exhibit a locally rather narrow zone 
of excessive temperature apd electrical conductivity which is a self-sustaining 
and stable macroformation: The T-layer effect creates an essentially new 
behavior of the plasma as follows: 

- 

First, the interaction of the plasma with a magnetic field is amplified many 
times. Thus, a low temperature plasma can, despite its low conductivity, effec- 
tively interact with a magnetic field with the aid of the T-layer. 

Second, because of'the T-layer, the magnetic field acts as a catalyst which 
enables the comparatively cool plasma to transform a considerable amount of its 
energy into radiation. 

It should be noted that numerical solutions obtained from a study of the T- 
layer effect have stimulated further physical experiments, Here, the analysis of 
the theoretical calculations enables one to indicate the range of variation of the 
physical parameters for which the physical experiment can lead to positive results. 
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